Intraspecific variation buffers projected climate change impacts on Pinus contorta
نویسندگان
چکیده
Species distribution modeling (SDM) is an important tool to assess the impact of global environmental change. Many species exhibit ecologically relevant intraspecific variation, and few studies have analyzed its relevance for SDM. Here, we compared three SDM techniques for the highly variable species Pinus contorta. First, applying a conventional SDM approach, we used MaxEnt to model the subject as a single species (species model), based on presence-absence observations. Second, we used MaxEnt to model each of the three most prevalent subspecies independently and combined their projected distributions (subspecies model). Finally, we used a universal growth transfer function (UTF), an approach to incorporate intraspecific variation utilizing provenance trial tree growth data. Different model approaches performed similarly when predicting current distributions. MaxEnt model discrimination was greater (AUC - species model: 0.94, subspecies model: 0.95, UTF: 0.89), but the UTF was better calibrated (slope and bias - species model: 1.31 and -0.58, subspecies model: 1.44 and -0.43, UTF: 1.01 and 0.04, respectively). Contrastingly, for future climatic conditions, projections of lodgepole pine habitat suitability diverged. In particular, when the species' intraspecific variability was acknowledged, the species was projected to better tolerate climatic change as related to suitable habitat without migration (subspecies model: 26% habitat loss or UTF: 24% habitat loss vs. species model: 60% habitat loss), and given unlimited migration may increase amount of suitable habitat (subspecies model: 8% habitat gain or UTF: 12% habitat gain vs. species model: 51% habitat loss) in the climatic period 2070-2100 (SRES A2 scenario, HADCM3). We conclude that models derived from within-species data produce different and better projections, and coincide with ecological theory. Furthermore, we conclude that intraspecific variation may buffer against adverse effects of climate change. A key future research challenge lies in assessing the extent to which species can utilize intraspecific variation under rapid environmental change.
منابع مشابه
Modeling the effects of fire and climate change on carbon and nitrogen storage in lodgepole pine (Pinus contorta) stands
The interaction between disturbance and climate change and resultant effects on ecosystem carbon (C) and nitrogen (N) fluxes are poorly understood. Here, we model (using CENTURY version 4.5) how climate change may affect C and N fluxes among mature and regenerating lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Wats.) stands that vary in postfire tree density following stand-replac...
متن کاملDrought tolerance and growth in populations of a wide-ranging tree species indicate climate change risks for the boreal north.
Choosing drought-tolerant planting stock in reforestation programs may help adapt forests to climate change. To inform such reforestation strategies, we test lodgepole pine (Pinus contorta Doug. ex Loud. var latifolia Englm.) population response to drought and infer potential benefits of a northward transfer of seeds from drier, southern environments. The objective is addressed by combining den...
متن کاملForest pathology / Pathologie forestière Variation in pathogenicity of a mountain pine beetle–associated blue-stain fungus, Grosmannia clavigera, on young lodgepole pine in British Columbia
Grosmannia clavigera is the most pathogenic blue-staining fungal associate of the mountain pine beetle (Dendroctonus ponderosae). In contrast to its importance as a primary invader of lodgepole pine (Pinus contorta) sapwood, intraspecific variability in pathogenicity of G. clavigera on lodgepole pine, the predominant host of mountain pine beetles in British Columbia, has not been investigated i...
متن کاملVariation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity.
Tree species response to climate change-induced shifts in the hydrological cycle depends on many physiological traits, particularly variation in water relations characteristics. We evaluated differences in shoot water potential, vulnerability of branches to reductions in hydraulic conductivity, and water source use between Pinus contorta Dougl. ex Loud. var. latifolia Engelm. (lodgepole pine) a...
متن کاملUnderstanding and monitoring the consequences of human impacts on intraspecific variation
Intraspecific variation is a major component of biodiversity, yet it has received relatively little attention from governmental and nongovernmental organizations, especially with regard to conservation plans and the management of wild species. This omission is ill-advised because phenotypic and genetic variations within and among populations can have dramatic effects on ecological and evolution...
متن کامل